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Abstract
This article is the Communiqué of the Ontology Summit 2024 which
dealt with how ontologies and knowledge graphs can both aid and ben-
efit from neuro-symbolic and generative AI technologies. The article
synthesizes and summarizes the main points presented and discussed
during the summit. Neuro-symbolic systems integrate neural networks
with systems based on forms of logic applied to human-readable sym-
bolic representations. The advantages and disadvantages of current
neural network technologies and symbolic technologies are listed and
found to be mostly complementary, thereby motivating the development
of neuro-symbolic systems. Representative examples of applications are
presented that combine semantic technologies with neuro-symbolic and
generative AI technologies, which could help improve trustworthiness
of AI systems. The risks and ethics associated with these systems are
also presented.

Introduction
ARTIFICIAL INTELLIGENCE (AI) SYSTEMS are not new but have
been invigorated by the subset of AI called machine learning (ML) using
neural net architectures, which afford many new applications for tasks like
image classifications and text generation. Part of the current excitement
in current AI is the possibility of effective neuro-symbolic (NeSy) systems
which combine current ML systems with symbolic technologies based on
human-readable representations of problems, logic and search. NeSy sys-
tems have emerged as a promising approach for dealing with the recognized
deficiencies of non-symbolic ML techniques that are neural network based.

The Ontology Summit 2024 was a series of sessions held from Octo-
ber 2023 to May 2024 and featured over 20 prominent researchers in the field
of NeSy systems (Ontology Summit, 2024). The summit surveyed current
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techniques that combine neural network machine learning with symbolic
methods, especially methods based on ontologies and knowledge graphs. At
the simplest level ontologies capture some degree of meaning and are repre-
sentations of a knowledge domain. They define the concepts, relationships,
properties, axioms and rules within that domain, providing a framework
that enables a deep understanding of that subject area. A knowledge graph
(KG) is a representation of a set of statements in the form of a node- and
edge-labeled directed multigraph allowing multiple, heterogeneous edges for
the same nodes (Ontology Summit, 2020). As discussed in detail as part of
the Ontology 2020 Summit, a KG can be based in whole or in part on an
ontology (Ontology Summit 2020). An ontology enables machine reasoning
by allowing a system to draw inferences and to derive new information and
relationships between entities both in the ontology and in any KGs that
are based on the ontology. In contrast neural network and other ML mod-
els acquire some degree of shallow knowledge by training on large corpora,
learning the patterns and connections between words and images (Bzdok,
Altman, and Krzywinski, 2018). Hence, although their “knowledge base” is
broad, it is also sometimes incorrect and/or biased, and doesn’t explicitly
understand the semantics or relationships in that content.

This article is the Communiqué that synthesizes and summarizes
the major points of the Ontology Summit 2024. We begin by surveying
both kinds of AI methods: deductive methods, such as ontologies and
KGs, and inductive methods, such as neural networks. Deductive meth-
ods are also known as symbolic or logic-based AI, and inductive methods
are also known as non-symbolic or subsymbolic AI. It was found that the
two kinds of methods have complementary strengths and weaknesses. This
motivates finding ways to make use of both methods in applications. Such
combined approaches range from ad hoc uses to fully integrated NeSy sys-
tems. We give some examples of combining the technologies in the Case
Studies section. We then classify NeSy systems, after which we discuss
some applications of such systems. As with other automation opportuni-
ties, the introduction of AI technologies comes with risks, and we discuss
these as well as some of the ethical issues and regulations of such systems.

Symbolic and Subsymbolic Methods
Symbolic methods are techniques based on human-readable repre-

sentations of problems that are processed using various forms of logic, in-
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cluding classical logic, non-monotonic logic, and probabilistic logic. Com-
mon tools for symbolic methods include logic programming, production
rules, semantic nets, and frames. Symbolic methods have a long history
going back to the development of modern computers in the 1950s, and sig-
nificant research and development continues to the present day. Significant
recent work on symbolic methods include ontologies and knowledge graphs.

Some of the many applications of symbolic methods include
knowledge-based systems, symbolic mathematics, automated theorem
provers, ontologies, the semantic web, automated planning and schedul-
ing systems, symbolic programming languages, and multi-agent systems.
One of the applications of symbolic methods is to AI, and they were the
dominant paradigm of AI from the mid-1950s to the mid-1990s. However,
AI is only one of many applications of symbolic methods.

In contrast with symbolic methods, subsymbolic methods, also
known as connectionist methods, are techniques that do not rely on for-
mally specified symbols and logic. Subsymbolic methods, both generative
and discriminant (for finding patterns in data), are primarily based on
“deep” neural networks and include large language models (LLMs) and
many other methods. The currently popular generative AI systems are
most commonly implemented using subsymbolic methods. One of these is
the ML-based attention method which evaluates inputs to determine their
importance (weight), simulating how human attention works. Attention
methods are critical in generative pre-trained transformer (GPT) architec-
tures such as LLMs that are currently very popular for natural language
processing (NLP). Instead of a model specified with rules and formulas,
subsymbolic methods learn their models from a dataset called the training
set. A subsymbolic system that has been trained is validated by applying
its model to a validation dataset. Once the subsymbolic system has been
trained and validated it can be applied to new data to generate outputs.
Contemporary subsymbolic systems are trained on very large training sets
although the foundational details are not usually publicly released.

Unlike subsymbolic systems, symbolic methods are transparent
making them easier to debug and control, and therefore, explainable, re-
liable and trustworthy. The advantages of symbolic methods are impor-
tant for many applications, such as mission- and life-critical applications.
However, symbolic methods can struggle with real-world complexities and
the need for hand-crafting knowledge into a processable form, which limit
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Figure 1: The three components of AI (Ontology Summit 2017)

scalability. Still, when an application has a relatively small domain, the
lack of scalability of symbolic methods is not an issue. All the same, when
scalability is important, subsymbolic methods have significant advantages.

The AI Landscape
Today we have a dynamic and noisy AI landscape with reports such

as “large language models are changing AI and we need to understand
them” and “The Oppenheimer moment in AI: How Generative AI (Gen-AI)
and LLMs are changing the world” (McGuinness, 2023). This landscape
supports new approaches to a fuller, integrated artificial intelligence (AI)
that combine the strengths of past established symbolic approaches to cog-
nition and new approaches. Broadly, this combines learning with reasoning
and knowledge in symbolic forms like ontologies. Figure 1, from the Ontol-
ogy Summit 2017, is a high level model depicting the three AI components.

Cognitive theory and research helps us understand differences in
components like learning and reasoning and how the new field of inte-
grated AI fits into the well known dual processing modes of evolved human
cognition systems (Kelly & Barron, 2022). These two modes are called Sys-
tem 1 Thinking, which is fast, automatic, frequent, emotional, stereotypic,
unconscious, opaque; and System 2 Thinking, which is slow, effortful, infre-
quent, logical, calculating, conscious, explainable (Kahneman, 2011). An
important consequence of this theory of human cognition is that the two
Systems can arrive at different results although given the same inputs. The
theory has provided possible explanations for many cognitive biases, and
investigations into the basis of cognitive biases is an ongoing and active
area of research.

Washington Academy of Sciences



5

The distinction between subsymbolic and symbolic is analogous to
the distinction between System 1 thinking and System 2 thinking, respec-
tively. In some respects this analogy is helpful, but the analogy can break
down. For example, using heuristics, Kahneman (2021) proposed that Sys-
tem 1 thinking involves associating new information with existing stereo-
typical patterns, or thoughts, rather than constructing new patterns for
each new experience. This is similar to subsymbolic systems, which are
based on large databases of patterns derived from the training data. How-
ever, while System 1 thinking is fast and System 2 thinking is slow, the
reverse is the case for subsymbolic and symbolic systems; computers per-
form symbolic operations, especially deductive logic, extremely fast, but
subsymbolic systems have become so large, using billions or even trillions
of parameters, that they require large computing resources and as a re-
sult are relatively slow. The other features that distinguish System 1 and
System 2 are mainly human characteristics and so attributing them to
computer systems is problematic. Nevertheless, if one is careful to avoid
cognitive biases, such as jumping to conclusions, the analogy can be useful.
One distinction that does appear to be accurate is that System 1 thinking
is opaque while System 2 thinking is explainable. This is largely also a
distinction between subsymbolic and symbolic systems.

Another aspect of some symbolic methods is the generation of a
consensus among the individuals in a community, generally due to the way
that they are created. This is especially true for most ontologies, but it is
also part of other symbolic methods. For example, in software engineering
the creation of requirements requires a consensus among the stakeholders
(often expressed using an ontology), but the later phases of software devel-
opment do not have as much emphasis on consensus. Subsymbolic systems
such as LLMs are not designed for generating consensus. When the train-
ing set of a model includes the result of a prior consensus-building process,
then it might appear that the subsymbolic system is generating a consen-
sus, but the system is only retrieving an existing one. Furthermore, even
if a subsymbolic system could propose a consensus when trained on a set
of varying opinions, the system would still need to explain the proposal if
the system would be able to convince the community to agree to it.

There was considerable research and development on symbolic sys-
tems in the early days of AI. Now, due in part to advances in computer
chips and big data as well as improved neural algorithms, there is rapid
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progress with producing subsymbolic systems. For the rest of this section
we begin with an overview of some of the many subsymbolic architectures
and systems that have been developed. We then discuss the advantages
and disadvantages of subsymbolic and symbolic techniques. For the most
part the disadvantages of one class of techniques are advantages of the
other class of techniques. We first survey the advantages of subsymbolic
techniques and then discuss their limitations.

The Many Kinds of Subsymbolic Systems
The current AI era advances machine learning (ML) based on mas-

sive data repositories and fast chips for processing. Important capabilities
include image recognition and language translation. These machine learn-
ing advances make use of neuro-inspired architectures. Text, images, and
other data fuel ML that purportedly mimics the brain’s layered neural
networks. Current subsymbolic systems can have hundreds of connected
layers. For instance, recognizing objects in images involves pre-training on
millions of labeled images (the “P” in GPT) – cats, dogs, houses, cars –
under varying conditions, which allow for general image recognition, avoid-
ing the brittleness of early systems. Using a neural network to learn to
recognize images, all neatly labeled, requires powerful computing with ex-
amples under different lighting and angle conditions as well as with different
backgrounds and realistic partial views of the entities due to occluding ob-
jects. In a complex scene the system is trained using segments of the image,
so it can identify a baseball player, a bat and a ball all in the same scene.
Taken together, powerful computers with massive amounts of data allow
some generality of image recognition.

Convolutional Neural Networks (CNNs) are an important aspect of
some neural-based machine learning. These are networks that are inspired
by the human visual cortex, extracting features and patterns from images
in a manner that bears some similarity to how the brain identifies complex
shapes and objects. Initial layers extract low-level image features like edges,
corners, and textures, while layers deeper in the network take these features
as outputs and combine them to identify more complex shapes and objects.
Non-linear activation functions between layers allows networks to learn
complex relationships between features.

For text processing, a large language model (LLM) is trained on a
massive dataset of text, typically scraped from information on the Internet.
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This process helps achieve general-purpose language generation and avoids
much of the brittleness of earlier systems for language generation.

The “T” in GPT stands for “Transformer.” Neural network ar-
chitectures have been designed for natural language processing tasks like
translation and text generation. Transformer-based AI systems are a type
of architecture that can process sequential data, such as text or speech.
They can learn probabilistic relationships between different parts of a sym-
bolically represented sequence to predict the next word or phrase (often
referred to as a token). Multi-dimensional arrays use a tensor representa-
tion to capture the probability of how words are connected sequentially in
text. The LLM and Chatbot systems learn to process these tensors in a way
that allows it to process questions and generate responses that are under-
standable to humans. Transformer-based chatbots have captured popular
attention by engaging in dialog in response to questions. Transformers
power many machine translation systems, allowing for more accurate and
natural-sounding translations than earlier symbolic attempts. An essential
idea of this architecture is that unlike traditional neural networks that pro-
cess data sequentially, transformers use a technique called self-attention.
This allows them to analyze many parts of the sequence simultaneously,
identifying the likelihood of different elements being part of a sequence.

A GPT learns in a trial and error fashion using reinforcement learn-
ing. In the process it adjusts internal parameters (i.e., the weights of the
connections between nodes of the network) to optimize future choices. The
network iteratively learns from mistakes, refining its abilities with each
training batch. This aspect is one that relies on powerful computing to
provide many iterations. As a result, training a GPT model can be very
expensive, e.g., for computer hardware and operational costs such as elec-
trical power. While companies do not publicly release details about their
models, some information has “leaked out.” For example, there is some
evidence that GPT-4 has about 1.8 trillion parameters across 120 layers
and cost about $63 million to train.

There are several additional building blocks to a transformer system,
including:

• Tokens: The input data (text, speech) is broken down into smaller
units called tokens. These could be individual words, phrases, or even
characters.
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• Word Embeddings: Each token, say a word, is converted into a nu-
merical representation as a vector in a multi-dimensional space, es-
tablishing a context with other tokens.

• Encoders and Decoders (for generative tasks): Transformers often
have encoder and decoder parts. Encoders process the input se-
quence, analyzing the relationships between tokens. Decoders use
the encoder’s output to generate an output sequence, like translating
a sentence or writing a summary.

• Self-Attention Mechanism: This is a key to an effective transformer.
An attention mechanism allows the model to focus on specific parts of
an input sequence and determine how they relate to other parts. It is
strategically like highlighting relevant parts in a sequence to capture
the overall relations.

Advantages of Subsymbolic Systems
We now examine the advantages of subsymbolic systems:

• Accuracy: By considering relationships between parts of massive
input data, generative AI based on transformers architectures can
achieve high human-level accuracy when tested on standard tasks like
machine translation, text summarization, and question answering.

• Parallelization: Transformers show an ability to analyze many parts
of a sequence in parallel, making them more efficient in processing
large amounts of training data.

• Flexibility: A transformer architecture can be adapted to various
tasks by changing the nature of the inputs and outputs, e.g., images
rather than text. This makes them a more general tool useful for
several AI applications.

• Statistical Learning (of a rich conceptual model): Subsymbolic sys-
tems excel at finding patterns and relationships within massive
amounts of data. This ability enables them to model the world in
a way that appears to mimic human general intelligence.

• Output Capability: Transformers can translate between languages
and their notations including formal/logical ones. They can also ef-
fectively summarize and provide alternative outputs.

• Emergent Complexity: As subsymbolic systems become increas-
ingly complex, with more parameters, more neural net layers, and
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more data processing capabilities, new and unforeseen abilities might
emerge. To some this theoretical “emergent complexity” could lead
to a system that exhibits human-like general intelligence, even if it
wasn’t explicitly programmed for it. Evidence for emergence is sug-
gested by Rapid Performance Improvements. That is as subsymbolic
systems grow in size and complexity, they can exhibit sudden and sig-
nificant improvements on tasks such as simple reasoning, answering
open ended questions comprehensively, and even code generation.
Research suggests that these emergent abilities might exhibit “phase

transitions,” critical points in the size of the system and/or the amount of
training data beyond which new capabilities emerge out of nowhere. Finally
there is the phenomena of few-shot learning. Some subsymbolic systems
show the ability to learn new tasks with minimal training data, suggesting
an underlying generalizability by creatively combining the knowledge going
beyond rote memorization (Wei et al., 2022).

On the other hand, there are alternative explanations for emergent
subsymbolic capabilities. One such alternative explanation is that for a
particular task and model family, when fixed model outputs are analyzed,
emergent abilities appear due the researcher’s choice of metric rather than
due to fundamental changes in model behavior with scale (Schaeffer et al.,
2024). Specifically, “nonlinear or discontinuous metrics produce apparent
emergent abilities, whereas linear or continuous metrics produce smooth,
continuous, predictable changes in model performance. . .. alleged emergent
abilities evaporate with different metrics or with better statistics, and may
not be a fundamental property of scaling AI models” (Schaeffer et al., 2024).

Limitations of Subsymbolic Approaches
We now discuss some of the disadvantages of subsymbolic techniques

that were identified during the Ontology Summit 2024. Gary Marcus (2020,
2024) thinks that subsymbolic systems do not provide a proper foundations
for trustworthy artificial general AI for several reasons. Marcus argues that
what is needed is a more “hybrid, knowledge-driven, reasoning-based ap-
proach, centered around cognitive models, that could provide the substrate
for a richer, more robust AI than is currently possible” (Marcus, 2020).

Some of the key disadvantages of current subsymbolic systems in-
clude:

1. Rich cognitive models are needed that describe mental processes in
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detail to keep track of dynamic environments.
2. Extensive real world knowledge/experience is needed rather than just

text-based knowledge.
3. Intelligent systems need to represent complex relationships between

entities, such as causal relationships. These require a deep under-
standing of the world, and not just a recognition of patterns.

4. Representation of wholes and parts, i.e. composability, is necessary.
5. Common sense knowledge is developed over time through embodied

experience and the ability to interact with the environment.
6. Sophisticated reasoning explicitly uses symbols, logic, and rules and

require a symbolic foundation.
7. Some useful knowledge of human sentiment and preferences are im-

portant for tasks such as medical decision-making.
8. System behavior must be explainable and not a black box output.

A similar list of issues for subsymbolic systems was developed by
John Sowa (2024). These include:

1. No fixed set of meanings can adequately describe a continuous, dy-
namically changing world (which we might note is also a limit on a
formal ontology).

2. Written language, the source for training LLMs, is isolated from per-
ception, feelings, actions, and reactions of people in a dynamically
changing world.

3. Useful mental models are needed and are more fundamental than
language or logic.

4. Much of human intelligence and underlying mental models are prob-
ably lost in a mapping to LLMs.

5. A linear language or notation is not ideal for thinking or communi-
cating complex spatial patterns.
Sheth (2024) argues that subsymbolic systems, like GPT-4, have

impressive pattern recognition capabilities, including language processing;
but generating coherent text based on input has serious reasoning limita-
tions. Subsymbolic systems can perform certain types of reasoning tasks,
such as simple logical deductions or basic arithmetic, and can produce re-
sponses that appear rational on the surface. However, they lack genuine
comprehension or logical consistency since their reasoning capabilities are
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limited without real, cognitive understanding or awareness of concepts,
contexts, or causal relationships. These systems cannot go beyond the sta-
tistical patterns in the data on which they were trained. Thus, as also
argued by Marcus and Sowa, subsymbolic systems often need help with
more complex forms of reasoning that require deeper understanding, con-
text awareness, or commonsense knowledge. Furthermore, their reasoning
does not adapt well to the dynamicity of the environment, i.e., the chang-
ing environment in which the AI model is operating (e.g., changing data
and knowledge). More of the implications of these limitations is discussed
in the Risk section and consideration of future developments are discussed
in the Summary section.

Case Studies
In this section we give some examples of systems that make use of

both symbolic and subsymbolic methods, including a system that predates
current ML systems. We first discuss some examples of systems that use
subsymbolic techniques for creating and maintaining KGs and ontologies.
Then we discuss examples of systems that use KGs and ontologies to im-
prove subsymbolic systems.

From Subsymbolic to Symbolic
OntoLearn is an example of a knowledge extraction and ontology

development tool which predated current ML systems and aids in the cre-
ation and population of domain ontologies (Missikoff et al., 2002). The tool
utilizes a three-phase approach:

1. Extraction and filtering of terms from domain documents (using nat-
ural language processing and statistical techniques),

2. Determination of the terms’ underlying semantics and concepts, along
with the assignment of concept identifiers (using knowledge bases
such as WordNet (Fellbaum, 1998)), and

3. Generation of taxonomic, similarity and other relationships linking
the terms.

These steps result in the construction of a domain concept forest, ultimately
resulting in an ontology.

The recent release of LLMs makes many of OntoLearn’s natural lan-
guage and semantic concept matching tasks easier. LLMs have captured
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the imagination of the public and researchers alike. In contrast to previ-
ous generations of machine learning and statistical models, LLMs are more
general-purpose tools, which can communicate with humans. They excel
at many natural language processing (NLP) tasks such as information ex-
traction and summarization, translation, classification and more (Bennett
& Westerinen, 2023).

LLMs can define terms, find relevant, published resources, and an-
swer factual questions based on their internally represented knowledge. So
a question is, can they automatically extract and structure something use-
ful given what they can process from texts? Can they elevate their output
into richer forms such as are found in an ontology? Certainly, at a mini-
mum, LLMs can aid and enhance several aspects of ontology design and KG
population. Several presentations from the Fall Pre-Summit series demon-
strated these capabilities, as well as the value of using ontologies and KGs
to validate and support the creation of trustworthy output by LLMs.

The value of coupling ontologies and LLMs is summarized as follows
(Bennett & Westerinen, 2023):

• Use of LLMs to aid in ontology creation and population:
– Extraction of information from text and mapping to an ontology
– Creation of lists of initial concepts to begin or extend an ontol-

ogy, or to create exemplary KG instances
– Generation of SPARQL queries from natural language
– Summarization of an ontology or KG
– Assistance in alignment of ontologies and KGs
– Generation of competency questions and use cases for an ontol-

ogy
• Use of ontologies to aid in the output of trustworthy information by

LLMs:
– Validation of the responses of an LLMs
– Creation of training data or prompt inputs for an LLM
– Support logical reasoning and inference
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As an empirical test of the value of LLMs, Giglou et al. (2023)
performed a comprehensive evaluation of nine different LLM model families
(Bert, Bloom, Llama, GPT, etc.) using a zero-shot prompting method.
Three learning tasks were evaluated:

1. Taxonomy discovery (i.e., studying whether modular structure can
be determined)

2. Term typing
3. Extraction of non-taxonomic relations

It was found empirically that LLMs are not yet suitable for ontol-
ogy construction that entails a high degree of reasoning skills and domain
expertise, such as found in biomedical and food ontologies. On the other
hand, it seems reasonable that: “. . . when effectively fine-tuned they [LLMs]
just might work as suitable assistants, alleviating the knowledge acquisition
bottleneck, for ontology construction” (Giglou et al., 2023).

Another example where generative AI using LLMs have been used
to improve ontologies is the vast area of the Ontology of Chemical Entities
of Biological Interest (ChEBI). A challenge for such large ontologies is how
they can be maintained as the number of elements (chemical entities in
this case) expands rapidly and as novel structures are developed. The
complexity of such ontologies makes their development and maintenance
especially challenging. Entities can have many labels and many parent
entities, and the parent hierarchies can be very unbalanced with some parts
being sparse while others are very dense. Even a rule-based extension of
a chemical ontology based on structural features of the molecules using a
tool such as ClassyFire (Djoumbou et al., 2016) is hard to maintain or
integrate with ontologies. Thus ChemOnt’s 4,825 classes and rules are
not integrated with ChEBI’s definitions of ontology classes (Mossakowski,
2024). For such ontologies, the classical ML approaches have generally not
been able to learn the ontology hierarchy, and automated text mining has
failed to replace labor intensive hand curation.

Hastings et al. (2021) have attempted to use machine learning to
extend the ChEBI ontology to represent a novel molecule by starting with
the knowledge regarding the classes to which the molecule belongs. This
knowledge helps to predict the molecule’s chemical behavior and uses, as
well as to enrich data and to drive discovery approaches. Subsymbolic
techniques for ontology extension such as recurrent neural networks, scale

Spring 2024



14

better than previous techniques as the size the molecule and the ontology
increases, but they struggle with complex structures like aromatic ring
structures.

ChEBI classification techniques can be compared with other tech-
niques in terms of speed, reliability, and adaptability to noisy data. Re-
sults show that RoBERTa and ELECTRA transformers with self-attention,
pre-training, fine-tuning and utilization of sub-sampling for generat-
ing learning-ready datasets out-compete other approaches (Mossakowski,
2024).

On the whole, early empirical results show that LLMs are useful
for simple ontology construction. However, they are not sufficient (without
retraining or supplemented knowledge) for tasks requiring domain expertise
or when advanced reasoning is needed.

Continued research might lead to some changes to the knowledge
engineering process a well as address a family of research questions such
as:

• What are useful neuro-symbolic architectures for (grounded) knowl-
edge representation?

• Can an LLM act like willing but mediocre domain experts to get some
initial views of a domain?
Neuhaus (2024) argues that subsymbolic techniques are not likely to

replace ontologies or to fully automate the knowledge engineering process.
However, in partnership with knowledge engineers and domain experts and
as an assistant, they are likely to provide very valuable tools for knowledge
building.

From Symbolic to Subsymbolic
We now give a brief discussion of the use of symbolic techniques to

improve the performance of subsymbolic systems. Ontologies can provide
high-quality symbolic knowledge that captures a consensus among mem-
bers of a community as discussed in the AI Landscape section above, where
it was noted that subsymbolic systems are not well suited for generating
such a consensus. This suggests that ontologies could help subsymbolic
systems overcome this limitation. This is illustrated by the approach to
integrate knowledge from ontologies into the structure of a neural network
called ontology pre-training (Glauer et al., 2022, 2023). Pre-training allows
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the network to predict membership in ontology classes so that the structure
of the ontology becomes embedded into the network. A subsequent training
process prepares the system for a particular prediction task. Glauer et al.
(2023) used this approach to predict potential toxicity for small molecules
based on molecular structure. This, along with many other tasks in life
sciences chemistry, is normally a challenging task for ML. Their approach
improves on the state of the art, and shows that the model learns to focus
attention on more meaningful chemical groups when making predictions
with ontology pre-training than without. This may provide a path to-
wards greater robustness and interpretability of such tasks. In addition,
the training time was reduced after ontology pre-training, indicating that
the toxicity space model was better structured to learn what matters for
toxicity prediction with ontology pre-training than without. This is one
example of a neuro-symbolic approach to embed meaningful semantics into
neural networks.

Retrieval-Augmented Generation (RAG) is a NeSy method for deal-
ing with the disadvantages of transformer-based systems. A RAG system
combines both symbolic and subsymbolic AI techniques to make informa-
tion more reliable by building on a base of trusted information. A RAG
eliminates or at least mitigates mistakes by using a set of documents as
the only oracle for truth. Techniques like filtering retrieved documents
based on specific criteria or adjusting the number of documents retrieved
(k most similar) can help ensure that retrieved information directly ad-
dresses a question in a more focused way. For KGs, the filtering can be
specified using SPARQL queries to retrieve relevant documents and other
objects dependent on the domain. If a RAG system cannot determine an
answer from available documents, it can report this – basically stating that
“it doesn’t know”. In addition, RAG can avoid the issue of black box rea-
soning because it can be used to return the specific documents/texts that
support an answer. For example, AllegroGraph integrates with ChatGPT
and utilizes RAG, processing natural language queries based only on the
statements in a knowledge graph (AllegroGraph, n.d.). RAG is valuable to
aid in calculating confidence in results or to state that information is not
available. This benefits users to understand limitations and avoid misun-
derstandings. For a more in-depth discussion of RAGs, see Kurt Cagle’s
talk on complementary thinking (Cagle, 2023) and the article by DeBellis
and Underwood in this same issue (DeBellis & Underwood, 2024).
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Neuro-Symbolic Systems
NeSy themes have a long history, but only recently have substan-

tial projects been developed. The integration of symbolic and subsymbolic
methods remains a challenge, but integration appears to be useful for ad-
dressing complex AI problems that cannot be solved by purely symbolic
or subsymbolic means alone. So there are benefits to integrating the tech-
niques of both paradigms. Coupling may be through different methods,
including the calling of deep learning systems within a symbolic algorithm,
or the acquisition of symbolic rules during training. Ideally an AI system
should include a sound, symbolic reasoning layer in combination with deep
learning. In this section we classify the existing and proposed techniques
for integrating symbolic and subsymbolic systems.

NeSy architectures were classified by Kautz at the Ontology Summit
2021 and summarized in the Communiqué (Kautz, 2021, 2022; Baclawski
et al., 2022, §4). Kautz’s taxonomy consists of the following six types of
systems:

• A Type 1 neural-symbolic integration is standard deep learning. This
is included by Kautz to note that the input and output of a neural
network can be made of symbols, e.g. text in the case of language
translation or question answering applications. Other types use dif-
ferent inputs.

• Type 2 are systems such as DeepMind’s AlphaGo and other systems
where the core neural network is loosely-coupled with a symbolic
problem solver such as Monte Carlo tree search.

• Type 3 involves a neural network focusing on one task (e.g., object
detection) and interacts via its input and output with a symbolic
system which may specialize in a complementary task (e.g., query
answering). Examples include the neuro-symbolic concept learner
(Mao et al., 2019) and deepProbLog (Manhaeve et al., 2018).

• Type 4 neuro-symbolic systems compile symbolic knowledge into the
training set of a neural network as was discussed for the toxicity case
study.

• Type 5 systems are tightly-coupled but are distributed systems
in which symbolic logic rules are mapped onto embeddings which
act as soft-constraints on the network’s loss function used for
learning. An example of this is the Logic Tensor Network
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(Schlag & Schmidhuber, 2018).
• A Type 6 system is a fully integrated system capable of true symbolic

reasoning inside a neural engine.
Some of the main benefits of NeSy systems include:

• Transparency: Combining symbolic representations with neural net-
works can make AI decisions more understandable and explainable.

• Flexibility: Symbolic reasoning allows for adapting to new situations
and reasoning beyond data patterns, offering greater generalizability.

• Efficiency: Efficiently leveraging the strengths of both approaches can
lead to faster learning and improved performance.

Applications
There are several domains where the disadvantages of subsymbolic

systems are especially problematic, including healthcare, military applica-
tions and control systems (e.g., nuclear reactors). In this section we dis-
cuss healthcare applications and then discuss how one can integrate domain
knowledge by combining ontologies, KGs and subsymbolic methods.

Healthcare
Ophthalmology is one area where healthcare specialists have utilized

ChatGPT to create summaries and notes for treatments. An additional use
of subsymbolic systems is to make complex medical statistics more com-
prehensible through condensation (Thirunavukarasu, et al., 2023). When
researchers need to explain complex medical data or statistical results, sub-
symbolic systems can provide clear and concise explanations, making them
easier for readers to understand (Meng et al., 2024).

There is a range of healthcare assistance (along with challenges)
that are driven by NeSy AI. One example is to use neural network-based
processing for depression assessment, to highlight the symptoms and defi-
nitions of the disease along with contextualized recommendations, and to
provide decision support information in cases of depression. In this appli-
cation, text related to depressive symptoms, such as feelings of tiredness,
changes in appetite, and emotional fluctuations are run through a neu-
ral network to predict and explain the individual’s feelings and thoughts
related to depression. It can provide predictive analysis for depression as-
sessment, indicating the likelihood of depression based on input text with
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a high degree of confidence. It can also propose useful assessments such
as the disease severity, which assists in recommending further assessment,
appropriate interventions or patient treatments such as suggesting pharma-
cotherapy as a potential treatment option. Virtual healthcare assistance
incorporates human-like communication and understanding with intuitive
interfaces to help bridge between users and complex AI systems. It recog-
nizes different types of depression and the specific circumstances of each
(Roy, 2024).

ALLEVIATE is a second generation AI-enabled virtual assistant
used for telehealth. It focuses on mental health cases. ALLEVIATE pro-
vides personalized, user-explainable views for both patient and clinician
users during interactions, incorporating safety-constrained operations and
user-level explanations for outcomes. It offers dynamic evaluator feedback-
based refinements and a domain knowledge-guided safety envelope for med-
ically safe patient interactions and responsible emergency response (Roy,
2024).

Pharmaceutical applications are another important class of health-
care applications since this is a big part of treatment. While a great amount
of drug design data is available, an important goal is to acquire in-depth
knowledge of the chemical properties that determine whether a candidate
drug will be safe and effective. This knowledge would aid design, control,
optimization and safety. Steps towards this goal include development of a
series of related ontologies including:

• An equipment ontology (such as STEP, AP231, FIATECH),
• A general recipe ontology (such as OntoCAPE),
• A process safety ontology covering deviation, cause, consequence etc.,
• A material ontology for pharmaceutical product development,
• A reaction mechanism ontology about atoms, molecules, bonds, etc.

(Steinbeck, 2006), and
• A model and guideline ontology (Venkatasubramanian, 2024).

Ontologies preserve drug domain semantics, offer efficient knowl-
edge representation, and help organize information hierarchically in the
form of class-subclass relationships. In addition, ontologies capture re-
lationships and instances that can provide the basis for ontology-based
NeSy systems. The Columbia Ontology for Pharmaceutical Engineering
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(COPE) includes a data driven module to support information extraction
and semantic search coupled with a user interface employing a Chat sys-
tem (Mann, 2023). COPE provides weak supervision to programmatically
annotate important words in text documents, particularly in the context of
custom-built drug development ontologies and health and biomedical on-
tologies. It can also generate labeled datasets using text overlap, with each
word being labeled as important or not important. Additionally, COPE
highlights the focus on developing therapeutic agents that elevate levels
of high-density lipoprotein cholesterol (HDL-C) and the development of
cholesteryl ester transfer protein (CETP) inhibitors.

Information extracted from unstructured pharmaceutical docu-
ments could identify important entities, along with context and relations
between the entities, using custom-built drug development ontologies com-
bined with standard domain ontologies. The identified entities and associ-
ated context and relations could help auto-generate KGs. The generated
KGs could then be used in downstream applications such as visual repre-
sentation, text summarization, and efficient search. COPE has used this
approach to support current work on CETP inhibitors such as evacetrapib
(Venkatasubramanian, 2024).

Integrating Domain Knowledge
Ontologies and KGs are useful tools to connect disparate, but po-

tentially related, areas of knowledge. Recent advances in AI can aid in
rigorously exploring relationships that cut across distinct areas, such as
mechanics, biology, general science, or even art (Buehler, 2024). This ex-
ploration capability can deepen our understanding and accelerate innova-
tion in these areas (Buehler, 2024). As an example, information, starting
with a set of 1,000 scientific papers in the field of biological materials, was
represented as a detailed ontological KG. An analysis of the graph structure
resulted in the conclusion that there was no characteristic size to the node
structure of the KG. In other words, the KG had “an inherently scale-free
nature” (Buehler, 2024).

Integration of similar knowledge into the KG was accomplished by
use of a large language embedding model to compute deep node repre-
sentations. A path sampling strategy using combinatorial node similarity
ranking allowed linking of what had been assumed dissimilar/unrelated
concepts across the KG. Figure 2 shows an example of a distant relation
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between a flower and nacre-inspired cement via a node-path in the KG.

Figure 2: A path in a knowledge graph (Buehler, 2024)

The result of the integration of similar knowledge into the KG was to
allow queries that reveal unprecedented interdisciplinary relationships and
insights which identified gaps in knowledge about material designs, and
to predict material behaviors. One comparison revealed detailed structural
parallels between biological materials and Beethoven’s 9th Symphony. This
highlights the value of isomorphic mapping of complex, shared patterns.

In a second example, the approach “proposed” an innovative hi-
erarchical mycelium-based composite based on a joint synthesis of path
sampling with principles extracted from Kandinsky’s “Composition VII”
painting. The resulting composite was described as a “balance of chaos
and order, adjustable porosity, mechanical strength, and complex pat-
terned chemical functionalization” (Buehler, 2024). Other structural par-
allels were found across science, technology and art, that suggest dynamic,
context-dependent heterarchical interplay of entities beyond traditional hi-
erarchical paradigms.

Taken as a whole the use of graph similarity methods, illustrated by
the examples mentioned above, represents a potentially useful framework
for “innovation, drawing from diverse fields such as materials science, logic,
art, and music, by revealing hidden connections that facilitate discovery”
(Buehler, 2024). Of course, a suggested connection may be a spurious
relationship due to a coincidence or a confounding factor (Burns, 1997).
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We discuss this issue and other risks in the next section.

Risks
Current AI technology seems to promise a wave of benefits ranging

from task efficiency and automation, better data and information analy-
sis with resulting insights and enhanced social well being and progress.
Like previous automation opportunities it also comes with risks ranging
from job dislocations, algorithmic discrimination, data bias, and lack of
accountability. Our discussion of risks is broadly divided into several parts
starting with general risks that may apply to software-based systems and
perhaps would be enhanced by them having an artificially intelligent type
of knowledge, reasoning and learning. We then consider more specific risks
associated with current AI systems. There have been attempts to mitigate
and manage AI risks by means of regulations and guidelines, and we men-
tion a few of these. Finally, we consider how NeSy systems might help to
mitigate and manage risks.

There are many notions of risk that depend on the domain as well
as the particular context. A taxonomy of risk notions (or more precisely
measures of risk) was presented at the Ontology Summit 2022. While the
risk taxonomy was discussed in the context of disasters, it was intended for
measuring the level of risk for both adverse and beneficial events in contexts
other than disasters such as information technology, project development,
health and safety (Baclawski, 2022). The following are the main classes in
the risk taxonomy:

1. Probability of the event. For this measure one wishes to minimize the
probability of adverse consequences and to maximize the probability
of beneficial consequences. This measure is often used in the context
of an information technology project.

2. Downside Probability. This measure focuses on the probability of
adverse consequences. Many contexts make use of this approach to
risk, such as environmental risks, individual health risks, as well as
occupational, safety and security risks.

3. Expected consequences. The expectation is the product of the prob-
ability of the event times the impact of the event, typically expressed
in financial terms. The expectation is frequently used in business
contexts as well as in other contexts such as the ones listed above
when the impact can be quantified.
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4. Variance. Unlike probabilities and expectations, which are first-order
measures, the variance is a second-order effect. It is used in economic,
financial and insurance contexts. For example, automobile insurance
is a means by which an individual can reduce the possibility of a
large cost due to an accident. Another example is modern portfolio
management, which uses the variances of potential investments to
determine the best way to allocate the total investment, subject to
the amount of risk tolerance of the investor.
In the case of the risks associated with AI systems, any of the risk

measures listed above might be appropriate. When developing new AI
systems, the first measure in the list above would apply. On the other
hand, when considering the effects of the introduction of AI systems on
society, the second or third measure would be more appropriate, depending
on whether one can quantify the potential impact. The fourth risk measure
in the list could be used by an enterprise that is using products supplied
by AI companies (Baclawski et al., 2024).

General Risks
The following are some of the general risks for software systems that

also apply to AI systems:
1. The transparency of a system is determined by the extent of doc-

umentation of its scope, mission, policies, capabilities and status.
There is a strong incentive for companies to maintain trade secrets
to ensure advantages over their competitors. This makes it difficult
for someone who is not part of a company to understand its systems,
especially their limitations.

2. The next risk to consider is responsibility for the consequences of the
use of a system. What are the standards for stewardship involved?
There is a risk that developers of an AI system ignore issues of stew-
ardship and responsibility because they do not regard these issues as
being relevant to the capabilities of current AI systems and assume
that the customer is responsible for any harmful use of their system.

3. Ease of use is a desirable feature of a system, but it also has risks.
Chat systems support easy user dialogues and provide plausible re-
sponses. As a result chat systems can be seductively attractive for
users, but a risk is that users may become overly reliant and may no
longer bother to check that the responses are valid.
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4. Sustainability of any system involves organizational resources and
funding, digital object management, technical infrastructure, and se-
curity risk management.

5. The energy and physical infrastructure requirements for ML can be
very large to the point of having an adverse impact on the environ-
ment.
This illustrates the fact that there are many interacting factors in

assessing the risks of software systems.

Specific Risks
There are some risks that are more specific to AI systems because

of the way that they are trained and architected, and many of these have
been described in NIST (2024). The following risks are of note:

1. A major concern is that a large corpus naturally contains biases and
misinformation. Training is one of the foundations of subsymbolic
systems, and the resulting knowledge model can perpetuate biases
and misinformation in its outputs. This can result in generating
discriminatory content and/or factually incorrect information which
sounds plausible but isn’t grounded in reality. Users can easily mis-
take these fabrications as established facts.

2. Many current types of subsymbolic systems, such as those based on
LLMs, are inherently unreliable and should never be used in mission-
or life-critical applications without effective monitoring and supervi-
sion. A symbolic system might help in this monitoring and/or act
as an executive by using meta-cognition to guide executive activities.
A particular suggestion to manage misinformation risk is to mitigate
these by using RAGs which don’t use the LLM’s knowledge base but
use a core set of information for its decisions.

3. Current AI systems lack transparency ranging from how they are
trained to their architecture. Indeed, even if the developers of an AI
system were willing to be transparent, it might not be possible be-
cause such systems often lack explainability of their functioning and
results. Despite the widespread deployment of foundation models
based on standard deep learning and transfer learning we currently
lack a clear understanding of how they work, when they fail, and what
they are even capable of due to the potential for emergent properties
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as discussed in the Benefits of Subsymbolic Systems section above.
This demands caution, because any defects in a foundation model will
be inherited by all the adapted models downstream. Many believe
that to tackle this risk, much of the critical research on foundation
models will require deep interdisciplinary collaboration commensu-
rate with their fundamentally sociotechnical nature. (Bommasani et
al., 2021)
Because of the specific risks of AI systems mentioned above, new

methods of monitoring and evaluating system function and impact may be
needed. As it has been widely noted existing approaches to emerging AI
system evaluation have tended to focus exclusively on model evaluation.
Are they, for example, generating correct responses? However, such eval-
uations may potentially be “less sensitive to more general ways in which
AI assistants may underperform when considered as part of a broader so-
ciotechnical system. New methodologies and evaluation suites focusing in
particular on human-AI interaction, multi-agent and societal effects are
needed to support strong evaluation and foresight in this area” (Gabriel et
al., 2024). More about these issues will be discussed in the Ethics section
below.

Regulations
The risks associated with AI systems has led to regulations in many

countries and even for more extreme measures such as halting development
entirely. It is beyond the scope of this article to survey this very large
area. We only discuss some examples of how companies, governments and
professional organizations are addressing AI risks.

Open AI has developed the following list of safety standards in order
to mitigate some of risks mentioned above (Open AI, 2024):

1. Minimize harm by the promise to “build safety into our AI tools
where possible, and work hard to aggressively reduce harms posed by
the misuse or abuse of our AI tools.”

2. Build trust in the user and developer community. The promise is to
share the responsibility of supporting safe, beneficial applications of
our technology.

3. Learn and iterate by observing and analyzing how our models behave
and are used and seek input on our approach to safety in order to
improve our systems over time.
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4. A promise to “Be a pioneer in trust and safety”. Open AI promised
to support research into the unique trust and safety challenges posed
by generative AI, to help improve safety beyond our ecosystem.
Some regulations, such as in the European Union’s AI Act, consider

reasonableness and other principles for deciding an adequate amount of
generative AI risk management. It requires, for example, that algorithms
be explainable for “high-risk AI systems” such as those deployed for remote
biometric identification, law enforcement or access to education, employ-
ment or public services (Hutson, 2023). Current subsymbolic systems used
as components of chat systems are not categorized as high-risk and might
escape this legal need for explainability except in some specific use cases
such as in healthcare.

The IEEE recommended practice for defining and evaluating AI risk
in particular emphasizes safety, trustworthiness, and responsibility as well
as considering the global context in adopting AI systems (Baclawski et al.,
2024). Ideas for governance, and collaboration are also considered. It is
worth noting that simple AI concepts have been defined by IEEE (ISO/IEC
TR 24027).

Risks Specific to NeSy Systems
As has been noted throughout this article, hybrid systems combin-

ing symbolic and subsymbolic capabilities offer potential advantages over
either approach by themselves. However, there are many possible NeSy
architecture as discussed in the Neuro-Symbolic Systems section. Accord-
ingly, we are still in the early phases of research, and thus experience with
serious applications are a ways off. Nevertheless, it is prudent to anticipate
and mitigate risks that have already been identified, as discussed above in
this section. Aside from the risks already identified, NeSy systems may
have risks specific to such systems.

• The combination of subsymbolic and symbolic components adds com-
plexity to the system, which could make NeSy systems more difficult
to debug and to control. This could have an impact on reliability and
sustainability.

• There is much less experience with NeSy systems than with sub-
symbolic and symbolic systems by themselves. Moreover, each NeSy
architecture will need to be tested and analyzed to build safety and
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trust as required by the regulations listed above. Since there are may
architectures, there is a risk that there will not be enough resources
to build safety and trust in every architecture.

• In principle, NeSy systems should be more transparent and explain-
able, but there is the risk that the combination of subsymbolic and
symbolic may be even less transparent and explainable because it
may be difficult to identify which component has responsibility for a
result. This risk could be mitigated by carefully designing the system
to be explainable.

• NeSy systems may not have any effect on biases or misinformation,
or they could magnify these errors, unless steps are taken to monitor
and mitigate biases and misinformation. For example, if the symbolic
component of the NeSy architecture is a front-end to the system,
then it could attempt to reverse errors that were produced by the
subsymbolic component, or it could at minimum detect and report
them.
As systems become more capable with human-like capabilities, the

impact of some risks over time, such as replacing people in typical tasks,
will be harder to measure. Expensive random trial experiments (RTEs)
may be needed (Yohsua et al, 2024). In clinical studies, such as diagnosis
and outcome predictions, RTEs are widely recognized as the soundest way
to determine the actual value of an automated system. The value of ad-
vanced NeSy systems is likely to be tested for clinical practices and actual
outcomes over time. A first step for this and system design, evaluation
and monitoring would be to leverage responsible, professional software de-
velopment standards and give them enough strength to work in particular
domains like healthcare with their own professional standards and prac-
tices. More discussion of these issues is presented in the Ethics section
below.

Ethics
AI systems raise many ethical issues. While most of these issues are

the same as for any software system, there are some issues that are unique.
A complete exploration of AI ethics is beyond the scope of this article;
however, the broad outline of several general approaches to support ethics
for NeSy systems can be listed. These approaches are accompanied by a
use case to illustrate the role of an ontology or knowledge graph. We then
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list some examples of recommendations for AI ethics. We end with some
general ethical considerations. For more about AI ethics see the AI Ethics
Panel at the Ontology Summit 2024 (Bennett & Krishnan, 2024).

1. Domain-specific ethical considerations are critical in computer secu-
rity, health care and many other areas of specialization. As noted
in the Blueprint for an AI Bill of Rights, “Systems should undergo
pre-deployment testing, risk identification and mitigation, and ongo-
ing monitoring that demonstrate they are safe and effective based on
their intended use, mitigation of unsafe outcomes including those be-
yond the intended use, and adherence to domain-specific standards”
(OSTP, n.d.). Domain-specific standards can be implemented as on-
tologies.
Use case: Governance of a healthcare AI model can be implemented
using the HL7 FHIR data model, in the manner attempted by Das
and Hussey (2023) and including domain-specific privacy and security
constraints suggested by a NIST Working Group – and implemented
as ontologies (Chang et al., 2018).

2. Subsymbolic systems can generate datasets used for subsymbolic sys-
tem training and other machine learning applications. Complete au-
tomation may not be possible in all cases, but artifacts generated by
subsymbolic systems can be analyzed using rules in an ontology-based
framework.
Use case: Mousavi and Termehchy (2023) demonstrated the use of a
simple ontology of people to implement declarative constraints on a
subsymbolic system, and also survey other approaches to accomplish
similar results.

3. By providing an affordable and ubiquitous NLP interface, a subsym-
bolic system can enable individuals and groups to interrogate AI im-
plementations of interest to them or their organizations. This can
include AI training sets, provenance, test engineering and interoper-
ability. Ontologies provide explicit guidance over what information
can be provided and to whom as well as guidance as to what questions
to ask.
Use case: A user can query a subsymbolic system to understand that
a subsymbolic system voice model was trained only on English speak-
ers, but a data protection ontology limits responses to anonymized
information about individual speakers.
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4. Subsymbolic systems can display bias even when guardrails have been
erected to address them (Kotek et al., 2024). They note that “bias
[occurs] across minoritized groups, but in particular in the domains
of gender and sexuality, as well as Western bias, in model generation.
The model not only reflects societal biases, but appears to amplify
them.” A closely related problem is that of data protection. Certain
classes of data, such as Personally Identifiable Information (PII) or
NIST SP 800-171 “Controlled Unclassified Information” (CUI) are
similar to Protected Classes in that they must be identified in order
to perform certain analyses – even to avoid bias – yet must also be
protected from unwanted or malicious access.
Use Case: Zhao et al. (2024) propose a plugin for ontology tools
like Protege which could exploit subsymbolic systems to facilitate
ontology development. This approach is one of several which could
identify and protect CUI and bias against protected classes by more
clearly identifying them – and the associated risks – when maintaining
domain specific ontologies. Similarly, the Enterprise Knowledge team,
in a blog post, note that ontology prompting techniques can provide
the subsymbolic system with relevant ontological information about
protected classes during inference.

5. A subsymbolic system integrated with an ontology built on AI ethical
principles could identify or avoid potential liability by monitoring
subsymbolic processes and utilization according to ethical principles.
Use Case: In Harrison et al. (2021) a proof of concept was built which
anticipates “. . . machine readable ethical AI principles, an agreed
schema or even legally enforced standard . . .[And which] could be
read directly into AI entities, with the presence and implementation
of the principles auditable by regulatory authorities, and adherence
even standing to lower legal liability and damages apportioned to
developers or the owners of AI systems.” Ontologies can also iden-
tify the authoritativeness of certain sources, such as identifying the
potential for sarcastic content in discussion forums (Irwin, 2024).

Individual countries, country alliances (notably the EU), nonprofits
and standards organizations are in the process of advocating or developing
recommendations for AI users. A partial list of these includes:

• European Commission’s Ethics Guidelines for Trustworthy AI
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
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trustworthy-ai
• Montréal Declaration for Responsible AI Development

https://montrealdeclaration-responsibleai.com/the-declaration/
• Organization for Economic Cooperation and Development AI Princi-

ples https://oecd.ai/en/ai-principles
• ISO/IEC TR 24368:2022 Information technology – Artificial intelli-

gence – Overview of ethical and societal concerns https://www.iso.org/
standard/78507.html

• ISO/IEC 42001:2023 Information technology – Artificial intelligence
– Management system https://www.iso.org/standard/81230.html

• UNESCO Recommendation on the Ethics of Artificial Intelligence
https://unesdoc.unesco.org/ark:/48223/pf0000381137

• US White House Blueprint for an AI Bill of Rights
https://www.whitehouse.gov/ostp/ai-bill-of-rights/

• NIST Trustworthy & Responsible Artificial Intelligence Resource
Center (AIRC) https://airc.nist.gov/Home

• IEEE 7000:2021 IEEE Standard Model Process for Addressing Ethi-
cal Concerns during System Design https://standards.ieee.org/ieee/
7000/6781/

• IEEE 7001:2021 IEEE Standard for Transparency of Autonomous
Systems https://standards.ieee.org/ieee/7001/6929/

• IEEE 7010-2020 IEEE Recommended Practice for Assessing the Im-
pact of Autonomous and Intelligent Systems on Human Well-Being
https://standards.ieee.org/ieee/7010/7718/

• Other IEEE working groups are drafting standards for Big Data
Metadata, Security and Trustworthiness Requirements in Generative
Pretrained AI Models, Ethically Aligned Educational Metadata in
Extended Reality (XR) & Metaverse, Data and AI Literacy, Skills,
and Readiness, and Recommended Practice for Defining and Eval-
uating AI Risk, Safety, Trustworthiness, and Responsibility. IEEE
also sponsors its Ethics Certification Program for Autonomous and
Intelligent Systems (ECPAIS).

Some, but not all, of the guidelines and standards listed above were the
source material from which the AI Principles Ontology (AIPO) was built
(Harrison et al., 2021). Among the AI ethics standards that have been
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produced, one of particular interest to the ontology community is IEEE
7007-2021 – which is also cited by Harrison et al. (2021).

Ontologies can support a standard reference model of ethical prac-
tices against which subsymbolic systems can be used to (a) fuse multiple
data sources, (b) generate design-stage requirements to support ethics, (c)
generate tools to collect audit data, (d) compare audit results against the
reference models to assess compliance.

NeSy systems using simpler architectures in the Kautz classification
as well as NeSy systems for narrow applications seem likely to be devel-
oped before systems with more complex architectures or intended for more
general application domains. Consequently, there should be time to learn
about and to address the risks of NeSy systems. It is hoped that experiences
with such systems will lead to a better understanding of the constraints
that must be imposed so that AI systems will be ethical. Unfortunately, as
mentioned already, companies developing products are reluctant to reveal
details about their systems.

Some authors regard technological uncertainty, incomplete data,
and management errors to be the main sources of ethical risks (Guan et al.,
2022). Some of these authors seek to define constraints within the software
and systems. It is an open question how to define specifications for things
that we never want AIs to be able to do. We do not yet have a standard
way to implement this class of ethical constraints. Rules represented in
textual form are open to indefinite interpretation, some of which are inter-
pretations that humans would not agree with. Any simple attempt to build
morality into machines seems subject to this problem of interpretation. For
other authors the most important aspect of ethical AI is in how we humans
use AI. An example which already seems to be trending out of control is
the use of autonomous drones for offensive purpose that are not under the
control of a human, such drones should never be able to use deadly force.

Summary
We are currently at the outset of an AI boom which has captured the

imagination of the public as well as the interest of large companies. An im-
portant consideration for any information or software based system is that
its results be correct, especially for mission- and life-critical applications.

Most current AI research and development has been devoted to sub-
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symbolic systems, which have many disadvantages. Subsymbolic systems
can generate factually incorrect information that is especially problematic
because it is presented in a plausible fashion. This has led to many calls for
subsymbolic systems to have “guardrails” based on a reliable ontology or
other semantic resource so that inconsistencies and errors can be rejected.

Symbolic techniques, such as semantic techniques, are highly de-
veloped, have many applications other than AI, and have advantages and
disadvantages that are complementary to subsymbolic techniques. This
suggests combining the subsymbolic techniques with symbolic techniques,
leading to NeSy systems.

In this article we presented some of the most prominent examples
of NeSy systems, the proposed classifications of such systems, and some
of their applications. There are many risks associated with AI systems
in general and NeSy systems in particular. In addition to listing some of
the risks that are unique to such systems, we also gave a framework for
expressing and quantifying different kinds of risks. The ethics of AI system
is a very broad area so a complete survey was not possible, but a broad
outline was presented.
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